

Microplastics Occurrence, Health Effects, and Mitigation Policies

Legislative Briefing

Friday, June 2, 2023 1:30-2:15 pm Full Report: bit.ly/microplasticsreport

Photo Source: Cole Brookson

Agenda

1:30-1:35 pm	Introduction About CalSPEC	Richard Kravitz, MD, MSPH
1:35-1:40 pm	Overview of Microplastics	Katrine Padilla, MPP
1:40-1:50 pm	Health Effects of Microplastics	Tracey Woodruff, PhD, MPH Courtney Cooper, MPH
1:50-2:00 pm	Microplastics Policies	David Wooley, JD
2:00-2:15 pm	Questions and Discussion	All

About the California State Policy Evidence Consortium (CalSPEC)

Presenter: Richard Kravitz, MD, MSPH Co-director, CalSPEC Director, UC Center Sacramento

Aims

- Enlist California's premier public research university in supporting public policy
- Synthesize evidence that informs state legislative deliberations

Essential ingredients

Overview of Microplastics

Presenter: Katrine Padilla, MPP Project Coordinator, CalSPEC Project Policy Analyst, UC Davis Center for Healthcare Policy and Research

What Are Microplastics?

- **Microplastics** polymer particles $\leq 5mm (5,000 \, \mu m)$ in one dimension * $\mu m (micron or micrometer) = 1 thousandth of a millimeter (mm)$
 - primary microplastics purposefully manufactured
 - *secondary microplastics* generated from degradation of plastic products
 - differ in size, shape, and chemical composition (including additives)

How Do Microplastics Move Through The Environment?

- Introduction of microplastics to environment occurs throughout the plastics life cycle, though mostly during disposal
- Transport occurs via wind, storm runoff, rivers, wastewater, evaporation, rain, and ocean currents
- Final deposition is frequently unknown due to the prolonged biodegradation process

How Prevalent Are Microplastics in the Environment?

 Microplastics (MP) cross geographic and environmental boundaries and have been found everywhere (in humans, food, biota, water, soil and air)

	Examples of microplastic prevalence or occurrence in various environmental compartments
Food	Humans consume ~140,000-155,000 particles annually; sea salt up to 1674 MP/kg; lake salt up to 462 MP/kg; sugar appears comparable
Flora/Fauna	MP detected in aquatic plants (coral, seagrass, duckweed) and agricultural products (cucumbers, carrots, radish, lettuce); 220 of 800 animal species studied had ingested MP
Water	Sea surface=.02-8,654 MP particles/m ³ ; tap water 0-628 particles/L and bottled water 0-4,889 particles/L; daily wastewater discharges 50k – 15M particles/day
Soil	Ag fields 62.5-1,075 particles/kg soil; ~7% topsoil weight from MP near roads/industrial areas
Air	Indoor air=3.3-12.6 particles/m ³ ; outdoor air=0.6-5.6 particles/m ³
Humans	Detected in blood, breast milk, Placenta/meconium, colon, hair, liver, lung, saliva, skin
Soil Air Humans	Ag fields 62.5-1,075 particles/kg soil; ~7% topsoil weight from MP near roads/industrial areas Indoor air=3.3-12.6 particles/m ³ ; outdoor air=0.6-5.6 particles/m ³ Detected in blood, breast milk, Placenta/meconium, colon, hair, liver, lung, saliva, skin

Conclusion

- Microplastics research is an emerging field dominated studies of occurrence and size rather than intermediate and long-term environmental and health effects.
- Microplastics experience long-range transport across environmental and geographic boundaries increases environmental and human interactions

 The growing body of evidence shows increasing human exposure to microplastics due to accumulation in the ecosystem
- Increasing rate of plastics production + persistence from long half-life = bioaccumulation of microplastics with toxic properties

Health Effects of Microplastics

Presenters: Dr. Tracey Woodruff, PhD, MPH & Courtney Cooper, MPH University of California, San Francisco Program on Reproductive Health and the Environment (PRHE)

Health Effects - Background

- Humans are exposed to microplastics
 - We consume ~a "credit card" worth every week¹
- Plastic production is set to triple by 2060²
- Microplastics are persistent & bio-accumulative
- Previous systematic reviews on the topic were insufficient
 - CalSPEC conducted a rapid systematic review
- Research question: What are the human health effects from microplastics exposure?

¹Senathirajah K, Attwood S, Bhagwat G, Carbery M, Wilson S, Palanisami T. Estimation of the mass of microplastics ingested - A pivotal first step towards human health risk assessment. J Hazard Mater. 2021 Feb 15;404(Pt B):124004. ²The Organisation for Economic Co-operation and Development (OECD). Global plastics outlook: Policy scenarios to 2060. 2022. https://aboutblaw.com/3ke

Rapid Systematic Review Process

•Systematic review: rigorous method to evaluate available evidence on a research topic and inform decision-making

- •UCSF PRHE developed a systematic review method for environmental health science (the Navigation
- Guide) endorsed by National Academy of Sciences, Engineering, and Medicine (NASEM)

•Rapid systematic review: systematic review that omits certain steps to accelerate the process of completing a traditional systematic review¹

Overview

- No human studies were identified
- Study population: Rats & mice
 - Rats & mice are used to evaluate environmental chemical exposures and health effects
 - Health effects in rats/mice are generally concordant with effects in humans
- Primary microplastics

We reviewed nearly 2,000 studies on **how microplastics impact health**

Study Outcomes

- Studies covered a range of outcomes including cardiovascular, digestive, reproductive, neurological, musculoskeletal
- Due to time constraints, CalSPEC focused on 3 body systems that are relevant to human health:

Key Finding #1

Possible Classifications

Presumed to be a hazard to humans.

Suspected to be a hazard to humans.

Not classifiable as a hazard to humans.

Exposure to microplastics is **suspected** to be a digestive hazard to humans, including a suspected link to colon cancer.

Key Finding #2

Possible Classifications

Presumed to be a hazard to humans.

Suspected to be a hazard to humans.

Not classifiable as a hazard to humans.

Exposure to microplastics is **suspected to be a hazard to the human reproductive system for both males and females.**

Preliminary Finding

- Exposure to microplastics may harm the respiratory system
- We are investigating this preliminary finding further

Limitations

- The conclusions of this rapid systematic review are likely an underestimation of the human health harms from microplastic exposure:
 - Only evaluated 3 outcome types, studies on other outcomes may also find effects
 - Rodents in studies exposed to manufactured, pure microplastics and not chemicals that degrade from plastic (e.g., PFAS or BPA)
 - The studies only evaluated one route of exposure at a time

Conclusion

Microplastics have been a problem for a long time and **science is just catching up**

- First report to make a succinct statement about human health hazards of microplastics
- How findings can be used: For research:
 - Prioritize other human health outcomes impacted by microplastics exposure

Program on Reproductive Health and the Environment

✓ Identify strategies to reduce microplastics exposures

For regulators:

✓ Inform policy on production, distribution, and disposal of microplastics

Microplastics Policies

Presenter: David Wooley, JD

Director, Environmental Center, Goldman School of Public Policy

UC Berkeley

Public Awareness of Microplastic Impacts

- Scientific & policy research is accelerating.
- Growing public attention: news, NGO publications Gov't & industry reports.
- Rising awareness of microplastic links to climate change
 - Virtually all plastics are made from oil and gas

Main Findings - Policy Chapter

- Policies to reduce exposure to microplastics
 - Primarily California and EU
 - Microbeads in Cosmetics;
 - Research
- Policy development is nascent, largest exposure pathways uncontrolled
 - Microfibers, tires/brakes, plastic production
- International negotiations underway to limit plastic production
 - US in Key Role; CA Influence

• Urgency/Dilemma:

- Rapid increase in plastic production/exposure
- Large research gaps remain
- Need to act in face of uncertainty

• Future Policy Focus:

- Highest volume exposure pathways
- Most toxic compounds
- Fund research
- As policy measures expand, fund research assess effectiveness

Berkeley Public Policy The Goldman School

California Leadership

- Microbeads (cosmetics)
- SB 54 (2022) requires 65% of packaging to be recyclable or compostable & 25% reduction of all plastic packaging by '32
- Research: testing & standards for microfibers in drinking water
- Ocean Protection Council's February '22 Statewide Microplastics Strategy

February 2022

Impressions from the Research

Near term policy options

- Expand microbead prohibition to household/industrial cleaning products.
- Microfibers: establish filter standards for clothes washers/driers
 - (residential, industrial, institutional, commercial).
- Tires/brake dust: identify reformulation and on-board capture options
 - Note equity issue heightened exposure in minority communities.
- Ban specific polymers and additives known to endanger public health or environment
 - (e.g., PFAS compounds, phthalates see AB 1290 introduced 2/16/23)

Impressions from the Research

Longer Term Actions

- Research:
 - To support standards for synthetic textiles to reduce fiber shedding, impose producer responsibility (e.g. clothing).
 - On impact of microplastics on air quality and human lung function.
 - potential solutions include building filtration, enhanced street sweeping tech.

Impressions from the Research

Research – Knowledge Gaps

- Paint derived microplastics
- Improve labeling requirements to aid toxicity assessment & waste disposal of hazardous polymers/additives
- Optimize micro & macro-plastics capture systems for waste- and storm-water systems

Expand engagement and education on microplastics

General public, food and packaging industries.

CalSPEC Microplastics Report Contributors

CalSPEC Staff

- Richard Kravitz, MD, MSPH (University of California Center Sacramento; University of California, Davis)
- Dominique Ritley, MPH (University of California, Davis)
- Katrine Padilla, MPP (University of California, Davis)

Health Effects of Microplastics

- Tracey Woodruff, PhD (University of California, San Francisco)
- Courtney Cooper, MPH (University of California, San Francisco)
- Nicholas Chartres, PhD (University of California, San Francisco)
- Garret Bland, PhD (University of California, San Francisco)
- Juleen Lam, PhD (Cal State East Bay)
- Kate Guyton, PhD, DABT (National Academies of Sciences, Engineering, and Medicine)
- Susan LaMontagne (Public Interest Media Group, Inc.)
- Anne Sausser (University of California, San Francisco)
- Andrea Phillips (University of California, San Francisco)

Microplastics Policies

- David Wooley, JD (University of California, Berkeley)
- Elisia Hoffman (University of California, Berkeley)

Content Experts and Report Reviewers

- Andrew Gray, PhD (University of California, Riverside)
- Myra Finkelstein, PhD (University of California, Santa Cruz)
- Deepak Rajagopal, PhD (University of California, Los Angeles)
- Andrew A. Rooney, PhD (subject matter expert)

Consortium Advisory Council

- Garen Corbett, MSPA (California Health Benefits Review Program)
- Ariel Dinar, PhD (University of California, Riverside)
- Jay Lund, PhD (University of California, Davis)
- Fran Pavley, MA (USC Schwarzenegger Institute)

Librarian

Bruce Abbott, MLS (UC Davis)

Copyeditor

Sarah Ordody

